NeuroNet (White Paper)

A Self‑Evolving Decentralised AI Substrate for the Post‑Cloud Internet

White‑paper v0.2 — May 2025


1  Executive Summary

The global AI boom lives on hyperscale clouds owned by a handful of corporations. That model delivers scale but concentrates fragility: a single region outage, sanction or cable cut can silence critical AI services. NeuroNet proposes a complementary layer—a planet‑scale, trust‑minimised, edge‑AI mesh that behaves like a distributed nervous system. It learns locally, reasons collectively and heals itself when the backbone fails. Think “AI as the substrate beneath the next Internet” rather than an app that runs on top of it.


2  Problem Statement

  1. Single‑point fragility — central clouds are chokepoints for both compute and policy.
  2. Data‑sovereignty drag — privacy law blocks cross‑border training, starving central models of diversity.
  3. Energy cliff — cloud inference power draw is on track to exceed 10 % of global electricity by 2030.
  4. Capture risk — five firms control >80 % of AI compute; their priorities may conflict with public resilience.
  5. Adversarial surface — poisoned data or model exploits can ripple instantly across centrally hosted AI.

3  Vision & Core Design

3.1  Principles

  • Edge‑first, cloud‑optional
  • Cryptographic trust, not institutional trust
  • Modular & hot‑swappable: every layer can be upgraded or rolled back independently.
  • Self‑evolving: on‑device liquid neural nets (LNN) adapt continuously; global consensus only for policy or catastrophic fixes.
  • Energy‑aware routing shifts workloads to green or idle nodes.

3.2  Layer Stack (L0 → L5)

LayerFunctionPrimary Tech
L0 Physical Mesh5G / Wi‑Fi / LPWAN / StarlinkSD‑WAN + content‑centric networking
L1 Identity & CryptoPQC signatures & ZK‑SNARK attestationsCRYSTALS‑Dilithium, Halo 2
L2 Data & Model ExchangeGossip‑style server‑less FL with Byzantine‑resilient aggregation & differential‑privacy outlier slicingDP‑SGD, Trim‑medians
L3 Runtime SandboxWASM containers & eBPF filters; hot‑swap in secondsWASI‑NN, OCI images
L4 Model PrimitivesLiquid NN, Mamba, LoRA, MoE compiled through TVM → ONNXPyTorch 2.x
L5 API LayerVision / NLP / sensor fusion endpointsOpenAPI, GraphQL

Footnote: Every container follows a unit‑test → static‑analysis → 3‑of‑5 quorum sign‑off → staged rollout pipeline; proofs are logged on‑chain and can be rolled back within minutes.


4  Technical Building Blocks (TRL Snapshot 2025)

  1. Liquid Neural Networks (TRL 5) — 10× lower power than CNNs, continuous adaptation.
  2. Edge NPUs (TRL 7) — Horizon Journey 5, Google Edge TPU, Apple M4, Blaize Pathfinder (< 5 W).
  3. Byzantine‑resilient Federated Mesh Learning (TRL 4) — server‑less FL with poisoning defence (KRUM–Trim mix).
  4. Post‑Quantum Crypto (TRL 6) — NIST Round‑3 algorithms fit in constrained devices.
  5. Zero‑Knowledge Attestation (TRL 5) — 15 ms proofs on Cortex‑A.
  6. RL‑guided Packet Routing (TRL 3) — Stanford MANET experiments show 23 % latency cut under jamming.

5  Governance, Security & Ethics

  • DAO Workflow: proposal → 5‑day public debate → zk‑rollup vote with 67 % quorum (stake + reputation).
  • Transparency Logs: Merkle‑tree ledger records every patch, vote & model hash (IPLD).
  • Red‑Team + Watchdog AI: external red‑team rotates every 90 days; a micro “watchdog‑AI” audits telemetry and fires on‑chain alerts when anomaly score > 3σ.
  • Abuse‑Response: malicious modules quarantined automatically; emergency kill‑switch can force global rollback through DAO majority.
  • Incentives: node operators earn compute credits; bug‑hunters paid from a 2 % inflation pool; all emissions taper after Year 5.

6  Deployment Roadmap & Economic Plumbing

YearMilestoneCapExKey Metrics
2025 Q4Publish ref‑spec & SDK $2 M3 chip vendors prototyped
2026 Q2Pacific Disaster MVP (500 nodes) $15 M50 % faster SAR mapping
2027Series‑A style fund‑raise; launch incentive layer $200 M5 k validators, 1 M tx/day
2028Minimum Viable Network 1.0 (10 k nodes/5 regions) $500 Menergy‑aware scheduler live
2030Break‑eventx‑fee revenue ≥ op‑ex
2035Global Mesh (150 k nodes/40 countries)<150 ms cross‑continent TTL

7  Pilot Use‑Cases (Early ROI Signals)

SectorPain‑PointNeuroNet Edge
Disaster responseCable outage kills cloud AILocal LNN maps + drone swarm; 50 % faster victim geo‑tag
Rural tele‑medicineNo broadband for imagingOn‑device ultrasound; 90 % data‑plan saving
Grid cyber‑securityIsolated SCADATrustZone NPU anomaly detection; 95 % attack catch w/o Internet
Battlefield swarmsGPS‑denied / jammedLPI/LPD mesh; <100 ms swarm latency

8  Glossary (Jargon Buster)

LNN – Liquid Neural Network.
FL – Federated Learning.
ZKP – Zero‑Knowledge Proof.
CCN – Content‑Centric Networking.
KRUM – Byzantine‑resilient aggregation rule.


9  References (selected)

  1. Hasani R. et al., “Liquid Neural Networks,” Nature Machine Intelligence, 2024.
  2. EU Horizon H‑FL Consortium, “Serverless Federated Mesh Learning,” White‑paper v0.8, 2025.
  3. Feng Y. et al., “AI‑Optimised Routing in MANETs,” IEEE INFOCOM, 2025.
  4. NIST PQC Project, Round‑3 Finalist Algorithms, 2024.
  5. Horizon Robotics, “Journey 5 Edge NPU Datasheet,” 2025.

10  Disclaimer

This white paper is an AI-generated visionary document intended for exploratory and conceptual purposes only. It outlines a possible future architecture and roadmap but does not represent an active project, funded initiative, or commercial offering. All forward-looking statements are speculative and subject to significant technological, regulatory, and capital risks. This document does not constitute legal, financial, or investment advice. The authors disclaim any liability for decisions made based on this content. If any content herein coincides with an existing real-world project or initiative, such overlap is purely coincidental and unintentional.



Leave a comment